Connecting Psychiatry - Expert community for all mental health professionals

Updates Show Progress in TMS for Depression and Schizophrenia

(PSYCHIATRIC TIMES) - Repetitive transcranial magnetic stimulation (rTMS), which allows for direct activation of neurons, will play an ever-expanding role in depression and schizophrenia treatment, according to recent reports from Mark S. George, M.D., and Alan L. Schneider, M.D. George, who is distinguished professor of psychiatry, radiology and neurology, and director of the Brain Stimulation Laboratory at the Medical University of South Carolina College of Medicine, provided updates on rTMS research at the 2005 American Psychiatric Association annual meeting.

"We call this electrodeless electrical stimulation," George said at a symposium. "Electrical energy in a coil induces a magnetic field, and the field passes unimpeded through the skin and skull and induces an electrical current in the brain."

The physiological effects of TMS depend upon the site and frequency of stimulation (Ontario Ministry of Health and Long-Term Care, 2004). The frequency of cortical stimulation varies. Rapid-rate or repetitive TMS usually refers to the application of TMS for a train of minutes at frequencies >1 Hz and is commonly used in treatment studies. Transcranial magnetic stimulation at ≤1 Hz is referred to as slow or low-frequency TMS. The ability to stimulate the brain at either high or low frequency is important, because high-frequency rTMS (e.g., 20 Hz) may increase cerebral blood flow and neuronal excitability in the region of the cortex under the coil, but low-frequency rTMS (≤1 Hz) may have the opposite effect.

The magnetic pulse is further described by its intensity in proportion to the motor threshold (MT) of the individual. The motor threshold is the lowest intensity of stimulation that, when applied to the motor cortex, causes a standard contraction of a muscle in at least five of 10 consecutive trials.

While TMS devices can excite the surface cortex of the brain, George explained that blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI) has shown that cortical stimulation causes trans-synaptic deeper effects. For example, 1-Hz TMS over the left prefrontal cortex was associated with increased activity at the site of stimulation (Li et al., 2004). Activity was also increased in connected limbic regions, including the bilateral middle prefrontal cortex, right orbital frontal cortex, left hippocampus, mediodorsal nucleus of the thalamus, bilateral putamen, pulvinar and insula (t=3.85, p<0.001). Activity decreased in the right ventromedial frontal cortex.

For full article, please visit:

Views: 6


You need to be a member of psychiatryRounds to add comments!

Join psychiatryRounds

psychiatryRounds Social Media


CMEinfo: Board Reviews in Anesthesia, Cardiology, Internal Medicine, Radiology

© 2020   Created by PsychiatryRounds Team.   Powered by

Badges  |  Report an Issue  |  Terms of Service