psychiatryRounds

Connecting Psychiatry - Expert community for all mental health professionals

Biological Markers and the Future of Early Diagnosis and Treatment in Schizophrenia

(PSYCHIATRIC TIMES) - Early intervention is key in psychiatry because it may improve prognosis. This has been especially difficult with schizophrenia. There is a strong basis for schizophrenia as a neurodevelopmental disorder, and the illness may result from several factors: genetic inheritance, disturbance of the in utero environment, and exposure to biological and psychosocial factors in infancy and early childhood, to name a few. Early environmental risk factors for schizophrenia include urban and winter birth, fetal malnutrition and hypoxia, and prenatal viral infections; diverse risk factors such as paternal age, drug abuse, immigrant status, social adversity, and isolation also appear to be contributing factors.1

The prodromal phase of schizophrenia has received a great deal of attention, and multiple biological markers have been identified that may allow earlier diagnosis and treatment of patients with the disease. Biological markers are defined as objective, measurable phenomena that may identify subjects at increased risk for development of disease and are often found not only in the patients but also in first-degree relatives. Biological markers may target etiology of the disease (risk factors for development of the illness), pathophysiology (abnormalities associated with the illness), or expression of the disease itself (manifestations of the illness). The Table summarizes some of the more common findings in schizophrenia based on the triad of etiology, pathophysiology, and disease manifestations.

We will review some well-known biological markers that have been studied, as well as ongoing research and where it is headed. The goal is to use biological markers to determine who is at risk for schizophrenia, to prevent the onset of schizophrenia in persons with prodromal symptoms, and, via early diagnosis and intervention, to reduce the severity of the illness in those who have schizophrenia. Figure 1 outlines a hypothetical model of how schizophrenia may be viewed along a continuum from neurodevelopmental phenomena to disease expression and its influences.

ETIOLOGY
Genetics
Schizophrenia is a common disorder with a lifetime prevalence of approximately 1%. It is highly heritable, but the genetics are complex. Study findings have consistently demonstrated that the risk to relatives of a proband with schizophrenia is higher than that to relatives of controls. On review of chromosomal studies, there seems to be a particularly increased focus of interest involving chromosome 22q11, chromosome 1q22, and chromosome 1q42.

One of the genes that has received the most attention is that involving catechol-O-methyltransferase (COMT).2 The story of the COMT gene enlightens the pathway between gene and phenotype. This gene is located on chromosome 22q11, and COMT participates in the clearance of dopamine from synapses, a functional polymorphism involving the presence of either valine or methione altering enzyme activity. This protein product may be involved in regulation of neurotransmission related to schizophrenia. Studies evaluating the cognitive function of persons with different allele combinations at this gene have shown varying effects.3 Clinically, this information may help subcategorize patients, allowing for the tailoring of treatment to particular genetic types. One day, it may also provide the basis to screen for increased risk.

Environment
Numerous studies have demonstrated that persons born in the winter and spring months have a 5% to 8% excess risk for schizophrenia, both in the northern and southern hemispheres, particularly for those with a negative family history. Further evidence suggesting the action of environmental factors in at least some forms of schizophrenia comes from associations with latitude, urban birth, household crowding, birth order, and famine during pregnancy.1

Neurodevelopment
Minor physical anomalies have consistently been identified in those with early-onset schizophrenia and have helped differentiate patients from controls. These signs of poor neurologic maturation include high-steepled palate, hypertelorism, large head circumference, small nasal volumes, and soft signs such as a positive glabellar tap.

PATHOPHYSIOLOGY
Intellectual functioning
A decline in scholastic abilities has been shown to identify children and adolescents in whom schizophrenia may develop.4 Research in this area has traditionally focused on neuropsychological testing; studies have shown that first-degree relatives have subtle impairments in attention, verbal memory, executive function, and working memory.5,6

Working memory—the ability to maintain and use information in short-term memory modulated by the prefrontal cortex—has been the subject of increased focus, with deficits in working memory being reported in patients with schizophrenia. Harkavy-Friedman and associates6 evaluated the performance of patients with schizophrenia, their first-degree biological relatives, and nonpsychiatric controls and found that the patients were consistently impaired on working memory tasks. In contrast, their unaffected relatives were only impaired on working memory tasks with higher central executive processing requirements.

For full article, please visit:
http://www.psychiatrictimes.com/schizophrenia/article/10168/46451

Views: 4

Comment

You need to be a member of psychiatryRounds to add comments!

Join psychiatryRounds


psychiatryRounds Social Media

Sponsors

CMEinfo: Board Reviews in Anesthesia, Cardiology, Internal Medicine, Radiology

© 2019   Created by PsychiatryRounds Team.   Powered by

Badges  |  Report an Issue  |  Terms of Service